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Abstract: Asymmetric hydrolysis of meso diacetate 3 using pig liver esterase afforded (1&3R,5S)-(-)-4, 

which was converted into chiral lactone moiety in compactin. 

As a part of our studies1 on asymmetric hydrolysis using biocatalyst, enzymatic hydrolysis of meso diacetate 

3 is attractive target in connection with the synthesis of compactin and related compounds. Recent paper2 

involving the erroneous assignment for absolute configuration of the hydrolyzed product (-)-4 prompts us to 

publish our results. 
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synthetic route to the chiral lactone moiety in compactin 
& 

R=Me mevinolin 

from (-)-4. R\” 

Direct benzylation of cis-1,3,5cyclohexanetriol 1 4 afforded the monobenzylether 2 in 40% yield, 

accompanied by di- and tri-benzylether in 17% and 13% yields, respectively. Compound 2 was subjected to 

usual acetylation to give a substrate 3 (91%) (Chart 1). Results of asymmetric hydrolysis of 3 using hydrolytic 

Chart 1 

Ho~oH~HoJ50H~oJ50A~o~o*c *coJ5.8~o~ 

1 2 3 (-)-4 

a: NaH, BnCI, DMSO, 40%; b: Ac20, Py. 91%; c: PLE, 62% (87% ee). 

(dl)-5 

Table Asymmetric Hydrolysis of 3 with Enzyme 

Reaction Yieldof Optical Absolute Yield of Recovery 
Entry Enzyme Tie(h) 4 (S) Purity Configuration 2 (%) of 3 (%) 

1 Pseuabmonas 22 13 
jluorescens lipase @FL) 

2 pFL* 2.5 16 

3 Aspergilh niger lipase 18 21 

4 Rhizopus delemar 41 33 
lipaSe 

5 porcin pancleas lipase 22 25 

6 pig liver esterase (PLE) 10min 62 

* DMSO was added as additive. 

(% =I 
18 lR,3&5R 19 64 

84 lR,3S,5R 1 79 

36 lR,3S,5R 8 72 

36 lR.3S.5R 44 14 

0 _____ 12 60 

87 lS,3R,5S 1 32 
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enzymes were summarized in Table. Among the tested enzymes, pig liver esterase (PLB) showed the best result 

to afford (lS,3R,5S)-4 (62% isolated yield, 91% conversion yield, 87% ee,5 entry 6). 

Pseudomonas j7uorescens lipase (PPL) resulted in low optical purity (entry l), but afforded better results 

((lR,3$5R)-4, 16% isolated yield, 78% conversion yield. 84% ee) in the presence of DMSO as additive (entry 

21.6 Enantioselective hydrolysis using PLE, PPL, and acetylcholinesterase (electric eel) of the racemicY=l- 

benzyloxy-c-3,r-5diacetoxycyclohexane (d-5) resulted in poor yield and low optical purity. 

Absolute configuration of the hydrolyzed product (-)-4 was established by the exciton chirality method7 as 

follows (Chart 2). Inversion of C5-hydroxy group of (-)-4 using Ikegami’s proce.dure8 afforded diacetate 

6 (93%), which was subjected to hydrogenolysis using 10% W-C catalyst to give the alcohol 7 (99%). 

Dehydration of 7 under mild conditions was achieved, in 57% yield, by trifluoromethanesulfonylation and 

subsequent treatment with silica gel. 9 To differentiate two types of acetates (acetates of allylic alcohol and 

homoallylic alcohol) of 8, enzymatic hydrolyses were studied. Among them, PPL afforded regioselectively 

hydrolyzed product 9 (77%) as a major product (regioselectivity : 30 to 1). The CD spectrum of the benzoate 10 

showed negative fist Cotton effect, which allows to conclude the absolute configuration of Cg-position of 10 to 

be 5. This result indicated that the absolute configuration of (-)-4 should be lS,3R,5S .2 

Chart 2 

(-)-4 6 7 8 9 
1 

e \ 
-5 3 a: i) M&I, Py, 93%; ii) AcOCs, 18-crown-6, 84%. 

AeO** 01 OCOPh 
b. 10% Pd-C, Ha. 99%. c: i) TfaO, Py; ii) SiOa, 57% 
from 7. d: PFL, 77%. e. PhCOCl, Py, 97%. 

10 

Next, diastereoselective synthesis of chiral lactone moiety in compactin from (-)-4 was studied. As a 

preliminary attempt, hydroxy group of (-)-4 was protected as t-butyldimethysilyl ether, and subsequent 

hydrolysis afforded 11 in 61% yield. PCC oxidation of 11 afforded corresponding ketone 12 (86%). Baeyer 

Villiger oxidation of 12 with mCPBA proceeded in nonregioselective manner to afford a mixture of 13 and 

desired 14 in ratio of 47 to 53. 

a: 1) t-BuMezSiCL HMPA, poly(4-vinylpyndine); ii) K2CO3. MeOH, 61% from (-)-4. 
b: PCC. 86%. c: mCPBA, 13 (18%). 14 (20%) 
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Stereoselective synthesis of the lactone moiety could be accomplished as follows (Chart 4). Jones oxidation of 

(-)-4 afforded the enone 15 (49%). The diastereoselective reduction of ketone function in 15 was achieved by 

NaBIQ-CeC13 to afford 3,5-truns isomer 16 (90%). 10 Compound 16 was converted to the acetate I7 with 

desirable configuration by Mitsunobu method. 11 The diester 18 was obtained in 44% yield from 17 via 

ozonolysis. Jones oxidation and subsequent esterification with CI-IzNz. After hydrolysis of acetate, lactonization 

of 19 in the presence ofp-TsOH afforded the lactone moiety 20 (70%) of compactin. 

Chart 4 

(-)-4 15 16 17 18 

OBn OBn 

a: Jones oxid.. 49%. b: NaBH4. CeC13, 90%. 
C: PPbs, DEAD, AcOH. 87%. d: i) 03; 

0 
ii) Jones oxid.; iii) CH2N2. 44% from 17. 
e: K2CO3, MeOH. 65%. f: p-TsOH,benzene, 70%. 
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12. Selected spectroscopic data. All compounds listed were obtained as colorless oil. 

(lS,3WS)-(-)-4: [a]# -4.88 (c=1.85, CHC13), reported value2 [a]D20 -5.0 (c=l, CHC13). IH-NMR 

(CDC13) 6: 4.74 (lH, tt, J=10.7, 4.3 Hz, Q-H). 3.71 (lH, m, C5-H), 3.49 (lH, tt, J=10.4, 4.1 HZ, Cg- 

H), 2.04 (3H, s, OAc). 

6: [a]D23 -7.35 (c=1.53, CHCl3). lH-NMR (CDC13) 6: 5.30 (lH, tt, J=3.5, 3.5 HZ, C3-H), 5.01 (lH, 

tt, J=10.6, 4.3 Hz, Cl-H), 4.50, 4.59 (1H each, d, J=11.7 Hz, WLPh), 3.75 (lH, tt, J=10.6, 4.1 Hz, 

C5-H), 2.03, 2.04 (3H each, s, OAc x 2). 

8: [a]D21 -189.4 (c=1.03, CHC13). lH-NMR (CDC13) 6: 5.85 (lH, m, C2-H), 5.79 (lH, m. Cl-H), 

5.41 (lH, m, C3-H), 5.16 (lH, tt, J=8.4, 4.9 Hz, C5-H), 2.53 (lH, ddd, J=17.8, 4.8, 4.8 HZ, C6-H), 

2.056,2.059 (3H each, s, OAc x 2). 

9: [a]D14 -150.2 (c=1.32, CHC13). lH-NMR (CDC13) 6: 5.84 (lH, m. C2-H), 5.77 (1H. m, Cl-H), 

5.17 (lH, m, C5-H). 4.38 (lH, m, C3-H), 2.49 (lH, m, C6-H), 2.05 (3H, s, OAc). The assignments of 

Cg-, and C5-H were established by lH,lH COSY 2D NMR spectrum. 

10: [a]D14 -253.4 (c=O.50, CHC13). CD (MeOH): AE =-9.09 (226 nm, c=7.25 x 10-5). 

11: [a]D14 +1.8 (c=l.O, CHC13). 12: [a]D17 -1.36 (c=1.26, CHC13). 

13: [a]D17 -5.95 (~0.47, CHC13). 14: [aID +18.9 (c=O.45, CHC13). 

15: [a]D24 -4.67 (c=1.20, CHC13). reported value2 [a]D 2o -3.0 (c=1.8, CHC13). lH-NMR (CDC13) 6: 

7.32 (5H. m. aromatic H), 6.89 (lH, ddd, J=9.0, 4.6, 3.7 Hz, C3-H), 6.07 (lH, dt, J=9.0, 1.9 Hz, C2- 

H), 4.56, 4.58 (1H each, d, J=12.2 Hz, OC&Ph), 3.91 (1H. m, C5-H). 

16: [a]D2’-41.1 (c=l.O3, CHC13), reported value2 [a]D 2O -39.3 (c=O.6, CHC13). IH-NMR (CDC13) 6: 

7.32 (5H, m, aromatic H), 5.71, 5.89 (1H each, m, C1,2-H), 4.53, 4.59 (1H each, d, J=12.0 Hz, 

OC&Ph), 4.13 (lH, m, C3-H), 3.87 (lH, ddd, J=9.2, 4.6, 4.6 Hz, C5-H), 2.71 (lH, d, J=9.2 Hz, C3- 

OH). 

17: [a]D20+61.7 (c=1.03. CHCl3). lH-NMR (CDC13) 6: 7.34 (5H, m, aromatic H), 5.88 (lH, m, C2- 

H), 5.75 (lH, m, Cl-H), 5.42 (lH, m, C3-H), 4.56, 4.61 (1H each, d, J=11.9 Hz, OCmPh), 3.84 

(lH, m. C5-H). 

18: [a]D20+21.0 (c=4.29, CHC13). lH-NMR (CDC13) 6: 7.31 (5H. m. aromatic H), 5.19 (lH, dd, 

J=10.4, 3.1 Hz, C2-H), 4.41, 4.61 (1H each, d, J=11.2 Hz, OC&Ph), 3.70, 3.71 (3H each, s, COOMe 

x 2), 2.72 (1H. dd, J=15.2, 5.6 Hz, C5-H), 2.54 (lH, dd, J=15.2, 6.3 Hz, C5-H), 2.15 (2H, m, C2-H), 

2.04 (3H, s, OAc). 

19: [a]D20+4.61 (c=4.29, CHC13).lH-NMR (CDC13) 6: 7.33 (5H, m, aromatic H), 4.56, 4.64 (1H 

each, d, J=ll.O Hz, OC&Ph), 4.41 (lH, m, C2-H), 4.18 (lH, m, Cq-H), 3.68, 3.76 (3H each, s, 

COOMe x 2), 3.02 (lH, d, J=6.02, OH), 2.71 (lH, dd, J=15.2, 5.9 Hz, C5-H), 2.57 (1H. dd, J=15.2, 

6.3 Hz, C5-H), 2.11 (lH, ddd, J=14.4, 9.4, 2.8 Hz, C3-H), 1.83 (lH, ddd, J=14.4, 9.6, 3.3 Hz, Cj- 

H). 
20: [a]D2’-11.5 (~0.46, CHCl3). lH-NMR (CDC13) 6: 7.33 (5H, m. aromatic H). 4.93 (lH, dd. 

J=5.6, 4.9 Hz, C6-H), 4.45.4.52 (1H each. d, J=11.7 Hz, OC&Ph), 4.00 (lH, m. C4-H), 3.62 (3H, s, 

COOMe), 2.81 (lH, d, J=5.3 Hz, C3-H), 2.80 (lH, d, J=3.6 Hz, C3-H), 2.52 (lH, add, J=14.4, 4.9, 

4.9 Hz, C5-H), 2.31 (lH, ddd. J=14.4, 5.6, 3.5 Hz, C5-H). MS m/z: 264 (M+), 205, 158. High MS: 

Calcd for Cl4H1605 264.0997; Found 264.1001. 


